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Today’s Topic

OpenPsi @ I111S

 Generative Adversarial Network
* Math

* Techniques

* Extensions, Variants and Applications
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Generative Models (Recap)

Discriminative Generative

* Goal: learn p(x; 0)

* Energy-Based Model

1
+ p(x;6) = 2 exp(—E(x; 6))
e General representation + non-trivial sampling for both training and inference

* Variational Autoencoder (VAE)

* Latent Variable Model: p(x,z) = p(z)p(x|2)
» Evidence Lower'Bound (ELBO) and Variational Inference

J(0,®;x) = Ezpngzix:)logp(x|z; )] — KL(q(z|x; $)||p(2))
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Generative Model

e VVariational Autoencoder

* Pros
* Flexible and stable training
* Nice mathematical properties (ELBO) for inference

* Cons
* Approximate inference
* Mode collapse and due to KL objective
* Blurry samples due to Gaussian parameterization

* Core challenge: approximate p(x) for MLE training

* Why do we even'care-about the density function p(x)?
* We just need a function g(-) that can produce good samples!
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Implicit Generative Model

OpenPsi @ I111S

* Goal: a sampler g(-) to generate images
* A simple generator g(z; 6)

« z~N(0,I)

e x=g(z;0)

* Likelihood-free learning

* Goal: g(7; 0) = Pyata

* ldea: minimize D(g(z; 0), Paata)
* D is some distance metric
* D does not involvelikelihood
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Implicit Generative Model

* Choose a distance measure D
* Goal: choose D(x) forx = g(z; 0)
* Intuition: D (x) measures how close x is'to training images
* Natural choice: a discriminative model p(y|x)!
* Objective L(8) = p(y|g(z; 6))

* Learning generative models'via discriminative approaches (Zhuowen Tu,
CVPR2007)

Deep Learning?
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Implicit Generative Model

* Choose a distance measure D
* Goal: choose a differentiable D (x; ¢) for g(z; )
* Objective L(8) = D(g(z;0); ¢)
* We can optimize 6 by gradient descent
* Howtoget¢ ?
* Goal: D(x; @) how likely x isfrom puta
* A binary classification problem!
* D(x;¢) = 1: x~paaa
* D(x;¢) = 0: x not.from p ¢4
e Let’s train a neural classifier!
* How.to choose the negative samples?

*.‘Random samples are too easy ...
* We'havea generator! (negative samples)

3/18 Copyright @ 111S, Tsinghua University 7
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Implicit Generative Model

* Choose a distance measure D
* Goal: choose a differentiable D (x; ¢) for g(z; )
* Objective L(8) = D(g(z;0); ¢)
* Train a neural classifier D(x; ¢)

* Binary classification: D (x; ¢) how likely x isfrom pg4ta
* D(x;¢):x — [0,1] (logisticregression)
 Training data {(x, 1)|x~Pgata} U {(X;0)|X~g(z; 0)}
* g(z; 0) to sample negative samples

* MLE learning
L(¢) 7Ex[logD(x; )] + E[log(1 — D(%; $))

* Overall objective
¢« §* = mQaXD(g(Z; 0);0)

ne e h* = mq?X Ex“’Pdata [log D (xiep)] F;é"”igvfr}ﬁg(l — D(X; 9))]

OpenPsi @ I111S
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Implicit Generative Model

* Choose a distance measure D
* Goal: choose a differentiable D (x; ¢) for g(z; )
* Objective L(8) = D(g(z;0); ¢)
* Train a neural classifier D(x; ¢)

* Binary classification: D (x; ¢) how likely x isfrom pg4ta
* D(x;¢):x — [0,1] (logisticregression)
 Training data {(x, 1)|x~Pgata} U {(X;0)|X~g(z; 0)}
* g(z; 0) to sample negative samples

* MLE learning
L(¢) 7Ex[logD(x; )] + E[log(1 — D(%; $))

* Overall objective
¢« §* = mQaXD(g(Z; 0).d)

ne e h* = mq?X Ex"’Pdata [log D (xiep)] F;é"”igvfr}ﬁg(l — D(X; 9))]
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Implicit Generative Model

* Choose a distance measure D
* Goal: choose a differentiable D (x; ¢) for g(z; )
* Objective L(8) = D(g(z;0); ¢)
* Train a neural classifier D(x; ¢)

* Binary classification: D (x; ¢) how likely x isfrom pg4ta
* D(x;¢):x — [0,1] (logisticregression)
 Training data {(x, 1)|x~Pgata} U {(X;0)|X~g(z; 0)}
* g(z; 0) to sample negative samples

* MLE learning
L(¢) 7Ex[logD(x; )] + E[log(1 — D(%; $))

* Overall objective
* 0" = max D(g(z,6);¢) = min1 — D(g(z 6); $)
e 9" = maxBxpyg,,[log DG Bggltog (1 — D (%5 ¢)]

OpenPsi @ I111S
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Generative Adversarial Network

* GAN (lan Goodfellow et al, NIPS 2014) Generative Adversarial Nets

e 79k citations, NeurlPS 2024 test-of-time award

° Gene rator G (Z ; 0) (Z Np (Z ) — N (Ol I )) Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
C L. Sherjil Ozair] Aaron Courville, Yoshua Bengio*
¢ g enerate rea | Istic Im ag es Département d’informatique et de recherche opérationnelle
Université de Montréal

° D|Scr|m|nator D(x, ¢) Montréal, QC H3C 3J7

* Classify the data is from p;4:50r G
* Objective

L(8,9) = mgin mdz)ax Exipya [logD(x;p)| + Ezg[log(1 — D(X; ¢))]

Training procedure

Collect dataset {(x, 1) |x~pgata} U {(X,0)|X~g(z; 0)}

Train discriminator DiLi(p) = Ex—p, .. [10g D(x; )] + Ez_[log(1 — D(X; ¢))]

Train generator G: L(¢p) = E, (5 [log D(G(z; 6))]

Repeat Conyrisht. § 1S, Tinaua University 1
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Generative Adversarial Network

* GAN (lan Goodfellow et al, NIPS 2014)

* Generator G (z; 8) & Discriminator D (x;'®)
[log D(x; ¢)] + Ez-g[log(1 — D(X; ¢))]

3/18
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End of Class?

* No, this is far from the end of story ©

* Let’s begin with the math behind-GAN

3/18 Copyright @ 111S, Tsinghua University 14
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Generative Adversarial Network

* GAN Objective
L(6,¢) = m@in mqng Ex~pdam [log D (x; $)] + Ez¢llog(1 — D(X; ¢))]

* Let’s Analyze the optimal solution D* and G* under L(8, ¢)

* Optimal D(x; ¢™) for x
L(D) = paata(x) “logD + pe(x) log(1 — D)

. Considerﬁ =0
0D
« We have Pdata®) _ e\
D* 1-D*
* So (1 - D*)pdata(x) — PG (X)D*
o D* — PdatalX)
Pdata(x) P06 (%)

* Remark: when having a perfect generator, D* = 0.5

3/18 Copyright @ 111S, Tsinghua University 15



Lecture 6, Deep Learning, 2025 Spring OpenPsi @ I111S

Generative Adversarial Network

* GAN Objective

L(6,¢) = m@in mqng Ex~pdam [log D (x; p)} + Ez-¢llog(1 — D(X; ¢))]

 Optimal discriminator D(x; ¢*) = paara (X)) Paata (x) + pe (X))
* Optimal generator G(z; ) with ¢*

o L(Q’ ¢) — Ex~pdam log PdatalX) 4 Ex~pG llOg pg(x)

Pdata(X)+pc(x) Pdata(X)+pg(x)

3/18 Copyright @ 111S, Tsinghua University 16
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Generative Adversarial Network

* GAN Objective

L(6,¢) = mein mqng Ex~pdam [log D (x; p)} + Ez-¢llog(1 — D(X; ¢))]

 Optimal discriminator D(x; ¢*) = paara (X)) Paata (x) + pe (X))
* Optimal generator G(z; ) with ¢*

* L(6,¢) =Exp,.,. |log DI | o Exp, [log pelx)

Pdata(X)+pc(x) Pdata(X)+pg(x)

. =F 1 Rgata(t) ] + Expg [log pdath(x) ] —log 4

X~Pdata 0g Paata0)+pg ) a(X)+pg(x)
2 2

3/18 Copyright @ 111S, Tsinghua University
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Generative Adversarial Network

* GAN Objective
L(6,¢) = mein mqng Ex~pdam [log D (x; $)] + Ez¢llog(1 — D(X; ¢))]

 Optimal discriminator D(x; ¢*) = paara (X)) Paata (x) + pe (X))
* Optimal generator G(z; ) with ¢*

o L(Q’ ¢) — Ex~pdam log PdatalX) 4 Ex~pG llOg pg(x)

L Pdata(%)+pg(x) Pdata(X)+D0c (%)
. _ Pdata(X) pg(x)
B Ex~pdata log Pdata(x)+PG(x)] T Ex"’pG [log Pdata(X)+PG(x)] —log4
2 2

\ 1 1
. = KL (Paata @ 3 (Padca + P6) ) + KL (P61 5 (Paaca + 16)) — log4

3/18 Copyright @ 111S, Tsinghua University
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Generative Adversarial Network

* GAN Objective

L(6,¢) = mein mq?x Ex~pdam [log D (x; p)} + Ez-¢llog(1 — D(X; ¢))]

 Optimal discriminator D(x; ¢*) = paara (X)) Paata (x) + pe (X))
* Optimal generator G(z; ) with ¢*

* L(6,¢) =Exep,,. |log Pic@e® | o Evpg [log Pg(x)

| " Pdata(*¥)+pc(x) Pdata(*¥)+p6 (%)
o — Pdata(X) pg(x)
= Ex~paaea |108 pdata(x)+pG(x)] + Expg [log pdata(x>+pa(x>] —log4
2 2
\ 1 1
- = KL (pgaca @ 3(Padea + P6) ) + KL (P6115 Paata + P6)) — log4

* 2*Jenson-Shammon Divergence (JSD)

3/18 Copyright @ 111S, Tsinghua University
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Generative Adversarial Network

0.4

— Dx(pllq)

0.3 1
— Duwlqllp

0.2 1
0.11

» Kullback—Leibler Divergence (Recap)

0.0 -

* KL(pl|q) = Ex~p[logp(x)/q(x)] S NIl IS AS e
* Asymmetric measure O 003 ]
* KL(p||q) forward KL (inclusive) 005 ] 002
* KL(q||p) reverse KL (exclusive) 000 ¢ 1 oo |
* Jensen-Shannon Divergence (JSD) D e

- JsD(llg) =2 (KL (Pl (0 +0)) + KL (all 3 0 + q3))
* Properties

* Symmetric: JSD(pl|q) = JSD(q||p)
* JSD(pllq) =0and/SD(p||lq) = 0iffp = ¢

e Jenson-Shannon distance: \/]SD(p| |q) satisfies triangular inequality

3/18 Copyright @ 111S, Tsinghua University 20
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Generative Adversarial Network

* GAN Objective

L(6,¢) = m@in mqng Ex~pdam [log D (x; p)} + Ez-¢llog(1 — D(X; ¢))]

* Optimal discriminator D(x; ¢) = Paara (X)/Paata (X) + e (X))
* Loss function with optimal discriminator

L(8) = 2JSD(p¢llpdata) — log4
* Global optimum

* G" = Paata
« I*=—log4

3/18 Copyright @ 111S, Tsinghua University 21
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Generative Adversarial Network

* Pros of GAN

* Likelihood-free learning

Focus on generation

Powerful loss function (neural netl)
Flexible mathematical framework

Connection to EBM, Game,Theory (Minimax game between G and D) and
even RL (connection to actor-critic. mnethod)
* Further reading: https://arxiv.org/abs/1611.03852, https://arxiv.org/abs/1610.01945

* There is no free lunch!

* Cons
* evaluation; sample diversity & training instability

3/18 Copyright @ 111S, Tsinghua University 22



Lecture 6, Deep Learning, 2025 Spring

Generative Adversarial Network

e Evaluation of GAN
* No p(x) at all!

* Not possible for any likelihood-based evaluation

* Idea: use a trained neural classifier f{(y|x)

* If x~Pgaata, [ (V|x) should have low-.entropy
* Otherwise, f (y]|x) should be close to uniform
* Samples from G should also.vary!

* pr(¥) = Ex—glf (¥|x)]|'should be close to uniform

Similar labels sum to give focussed distribution

3/18
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Generative Adversarial Network

e Evaluation of GAN
* No p(x) at all!

* Not possible for any likelihood-based evaluation

* Idea: use a trained neural classifier f{(y|x)
* If x~Paata, [ (V|x) should have lewéntropy
* Otherwise, f (y]|x) should be close to uniform
* Samples from G should also.vary!

* pr(¥) = Exglf (W|x)]'should be close to uniform

Let’s combine them!

3/18

Similar labels sum to give focussed distribution
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Different labels sum to give uniform distribution
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Generative Adversarial Network

e Evaluation of GAN

* Idea: use a trained neural classifier f

* If x~Piatar [ (V|x) should have low entropy

 Samples should also vary: ps(y) should be close to uniform
* Inception Score (IS, Salimans.etal, 2016)

* Use Inception v3 trained on ImageNet.as.f(y]|x)

o IS = exp(E NG[KL(f(ny)pr(y))D (higher the better)

High KL divergence Medium KL divergence Low KL divergence Low KL divergence
Ideal situation rated im g erated images Generator lacks
t distinctly o otd stinctly o diversity
label label
3/18 Copyright @ 111S, Tsinghua University

Label distribution
Marginal distribution
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Generative Adversarial Network

e Evaluation of GAN

* Idea: use a trained neural classifier f
* If x~Piatar [ (V|x) should have low entropy
 Samples should also vary: ps(y) should be close to uniform

* Inception Score (IS, Salimans.et'al, 2016)
* Use Inception v3 trained on ImageNet.as.f(y]|x)
+ IS = exp(Ex—g[KL(f dWpr 0)])

* |ssue of IS?

* NO pgqtq involved in IS!

* What if G memorizes a single image per label y from v ,4¢47?
» Additional reading: https://arxiv.org/abs/1801.01973

3/18 Copyright @ 111S, Tsinghua University
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Generative Adversarial Network

e Evaluation of GAN
* Inception Score (IS, Salimans et al, 2016)

* 1S = exp(Ex-c[KL(f W10)lIps (3))])
* |S only measures the quality of generated samples

* We also want G to fully cover pg,44

* |dea: statistics of G(z) should be similarto p 4¢a
* Statistics: measure the. distributioniof extracted features of p;4¢4

* Fréchet Inception Distance (FID, Heusel et al, NIPS 2017)
* Compute iy, Xy, and pg, Zgforpgyarq and G(z) using inception v3 pool3 layer (2048-d)
 Compute Wasserstein distance between two Gaussians (more on this later)
 FID = |,up \. /JG|2 +-trace (Zp + 2; — Z(ZPZG)UZ)
* Lower the better
318 * https://arxiv.orq/abs/1706.085@@¢ 1ms. Tsinchua tniversity 21
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Note: IND is a “distance version” of inception score. Details can be found at the FID paper’s Appendix A.1
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Note: IND is a “distance version” of inception score. Details can be found at the FID paper’s Appendix A.1
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Generative Adversarial Network

* Sample Diversity

* GAN suffer from the mode collapse issué
* The generator converges to a few samples

3/18 Copyright @ 111S, Tsinghua University Arj OVSk\/ et al.’ 2617
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Generative Adversarial Network

* Sample Diversity

* GAN suffer from the mode collapse issuée
* The generator converges to a few samples
* Or keep oscillating over a few modes

3/18

Step 5k Step 10k

Copyright @ 111S, Tsinghua University

Step 15k

OpenPsi @ I111S

Step 20k
Source: Metzetal., 2017
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Generative Adversarial Network

* Sample Diversity
* GAN suffer from the mode collapse issuée
* The generator converges to a few samples
* Or keep oscillating over a few modes

* This is a cheating strategy for.G(2)
* No fundamental solution for.this. ®

* |Intrinsic issue of JSD Forvkrad

Reverse KL

— pix) — p(X)

=
[*2]
. ¢

- plx)

-== q°(x) -—= q"(x) -== q"(x)

s
K
"

= =
o N
s Y

o
(<2}

Probability Density
=] [S)
'S (&)
Probability Density
Probability Density

o
N

o
o
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Data MMD JSD

Figure 1: An isotropic Gaussian distribution was fit to data drawn from a mixture of Gaussians
by either minimizing Kullback-Leiblerdivergence (KLD), maximum mean discrepancy (MMD), or
Jensen-Shannon divergence (JSD). The different fits demonstrate different tradeoffs made by the
three measures of distance between distributions.

[“A note onthe evaluation of generative models” -- Theis, Van den Oord, Bethge 2015]

3/18 Copyright @ 111S, Tsinghua University 33



Lecture 6, Deep Learning, 2025 Spring OpenPsi @ I111S

Generative Adversarial Network

* Training Instability
e Discriminator and generator may keep-oscillating

- w vy s G ) 0 b 4 1]

T T
3000 4000

Source;,. Mikantha..Jayathilaka y
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Generative Adversarial Network

* Training Instability
e Discriminator and generator may keep-oscillating
* Simple gradient decent on the minimax game may not converge at all!
* Intuitive example: ] = —xy
* Generator: x; discriminator: y
* Nash Equilibrium: x =y =0
* Gradient decent converges to the orbit

0 20 40 60 80 100
Iterations

Figure 3: A simulation of our example for updating = to minimize ry and updating ¥ to minimize
3/18 — LopyrTdhe febitfiginahea ynivetity With more iterations, the oscillation grows more and more unstab#é.
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Generative Adversarial Network

* Training Instability
e Discriminator and generator may keep-oscillating
* Simple gradient decent on the minimax game may not converge at all!

* Intuitive example: ] = —xy | Collapse
* Generator: x; discriminator: y = Collapse — | i
* Nash Equilibrium: x =y = 0 gt
* Gradient decent converges to the orbit b ot L et
* No stopping criteria! _ ﬂ
* Unlike MLE learning - = we  we,we ma
()G (b) D

* Sometimes GAN may suffer from immediate crashing!
e Additional reading:

* GANs.May Have No.-Nash Equilibria (Farnia et al, ICML2020)
e https:/farxiv.org/abs/2002.09124

3/18 Copyright @ 111S, Tsinghua University 36
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Generative Adversarial Network

* Training Instability
e Discriminator and generator may keep-oscillating

e Gradient Vanishing Issue
* Generator: z — x, low-d to high-d
* The intrinsic dimensionality of G is.small

0.6 7
0.4
0.2
0.0

T 04 0.
X 0.8 10 00

Figure 4: Low dimensional manifolds in high dimension space can hardly have overlaps. (Left) Two

. Discriminator: x - Z’ a hyper-plan in the high-d lines in a three-dimension space. (Right) Two surfaces in a three-dimension space.
* |tis almost impossible for two low-dimensional manifold to fully overlap in high-d
e D can always achieve-100%

3/18 Copyright @ 111S, Tsinghua University 37
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Generative Adversarial Network

Gradient of the generator with the original cost

o ' y =0x) y =log(1 - a(x))
— After 1 epoch 1.0 S
107 § —— After 10 epochs |1 7.5
o Tra I\k —— After 25 epochs 0.8 1 504 A
10-! | _
’ 0.6 2.5 1 0.8
10-2 | ueep - ~ 00 0.6 z
0.4 4 | 0.4
() g 10 | = 0.2
: 0.2 —5.0 1 0.0
10~ -7.51 °
) =i : ; -10.0
10- -10 -5 0 5 10 -0 -5 0 5
| ma” X o
10-6 ' ' 9 o(x) 2 log(1 - a(x))
f g g ps. (Left) Two
L the | 0.25 - 1.00 A )
107 . 0.75 1
limen: ozo; 050
10 .‘{I -')[Iill 1000 l.‘rl‘ll] '_’I]E}[J ',i’-Jl[i[l .'!Ui]l ;ﬂill] 4000 0.25 A
Training iterations X 0.15 1 3 '
2 2 0.00-
. . 3 S
« When D is overly confident Bt ~0.25 1
—0.50 A
. . . . 0.05-
e Gradient vanishes for Sigmoid output —0.75 ]
. . . 0.00 ~ —1.00 A
e Discriminator,cannot learn too fast! P S T S P S R
X X
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Generative Adversarial Network

e A lot of issues in GAN
e Evaluation
IS & FID

e Sample Diversity
* Mode collapse
* No fundamental solution

* Training Instability
* Tricky balancing between G and:D

* Let’s make it work!
e ...and a lot of'tricksare coming!

3/18 Copyright @ 111S, Tsinghua University 39
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GAN Techniques

e Deep Convolutional GAN (DCGAN, Radford et al, ICLR2016)

* The first milestone paper to make GAN really work

* Trick Suggestions

* Use fully convolutional network
* No pooling or MLP layer
e Supervised CNNs cannot be-directly used as discriminators

Fw

CONV 2

3/18 Copyright @ 111S, Tsinghua University CONV 4 Ll 40
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GAN Techniques

e Deep Convolutional GAN (DCGAN, Radford et al, ICLR2016)

* The first milestone paper to make GAN really work

* Trick Suggestions
* Use fully convolutional network
e Batch normalization should be.,used

* To stabilize training
e But NO batchnorm for output of G or.input of D
* Separate batchnormAfof p ,¢qand G

Discriminator

3/18 Copyright @ 111S, Tsinghua University l 41
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GAN Technigues

e Deep Convolutional GAN (DCGAN, Radford et al, ICLR2016)

* The first milestone paper to make GAN really work

* Trick Suggestions
* Use fully convolutional network
e Batch normalization should be-used
e Avoid RelU activation in discriminatar
* Avoid gradient vanishing
* RelU in generator except output layer, which should use tanh
* Leaky RelLU in diseriminator (slope = 0.2)

3/18 Copyright @ 111S, Tsinghua University 42
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e Deep Convolutional GAN (DCGAN, Radford et al, ICLR2016)
* The first milestone paper to make GAN really work

* Trick Suggestions
* Use fully convolutional network
e Batch normalization should be-used
* Avoid RelLU activation in discriminator
* Small learning rate and momentum
* Adam with learning rateny = 0.0002

* Momentum f = 0.5
* Small batch size = 128 (which helps prevent memorizing the training data)

 DCGAN can learn.interesting features and patterns

3/18 Copyright @ 111S, Tsinghua University 43
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. TnckSugg<
* Use full§
* Batch n«
* Avoid RES
* Small Ie— '

* DCGAN ca
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GAN TecC gz

* Deep Conw
* The firstr
* Trick Sugg

e Use ful

e Batchr

d AVOld[ man man woeman
with glasses without glasses without glasses

* Small |

* DCGAN c:

Results of doing the same
arithmetic in pixel space
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* Deep Convo
* The first r

* Trick Sugg:
e Use fully

e Batch n¢

e Avoid R¢
Small le

* DCGAN ca

Random filters Trained filters

Figure 5: On the rights guided backpropagation visualizations of maximal axis-aligned responses
for the first6 learned convolutional features from the last convolution layer in the discriminator.
Notice aaigmﬁmm minority of features respond to beds - the central object in the LSUN bedrooms
3/18 dataset. On the left is a random filteshiasebinas Cemparingdeite previous responses there is little to 46
no discrimination and random structure.
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GAN Techniques

Figure 6: Top row: un-modified samples from model. Bottom row: the same samples generated
with dropping out "window™ filters, Some-windows are removed, others are transformed into objects
with similar visual appearance.such as‘'deors and mirrors. Although visual quality decreased, overall
scene composition stayed similar, suggesting the generator has done a good job disentangling scene
representation from objeet representation. Extended experiments could be done to remove other
objects from the image and modify the objects the generator draws.
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e Deep Convolutional GAN (DCGAN, Radford et al, ICLR2016)

* The first milestone paper to make GAN really work

* Trick Suggestions
* Use fully convolutional network
e Batch normalization should be-used
* Avoid RelLU activation in discriminator
e Small learning rate and momentum

 DCGAN can learn interesting features and patterns

3/18 Copyright @ 111S, Tsinghua University 48
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e Improved Training Techniques for GAN (Salimans et al, NIPS2016)
* The paper primarily about GAN tricks

e also IS and semi-supervised learning; more-to cover later

* Trick Suggestions

* Feature matching
* Directly optimizing D (G (z)) for generator may suffer from gradient vanishing
* |dea: G(z) should match'the'image-statistics for p ,¢4
* Features are more informative than.the final score
L&) = |E5C‘~G [f(k\; ¢)] v Ex~pdata [f(x; ¢)]

* f(x)isthe final activation‘layer in D

|2
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e Improved Training Techniques for GAN (Salimans et al, NIPS2016)
* The paper primarily about GAN tricks
* also IS, and semi-supervised learning, more'to cover later
* Trick Suggestions
* Feature matching

 Minibatch discrimination
* Avoid mode collapse

* if G has collapsed mode,then samples of G will cluster to each other in the minibatch

* |dea: compute clustering feature as additional side information per mini-batch
e Similar to-batchnorm

» Additional feature o(xi) “h
« M =f(x').XT(T: projection tensor) s
. c(xi,xf)b = exp(|M; ), — M,-,b|1) . L
v . o(xi)b =2, c(x",xj)bcc’Dvrith 7 s, Tt U”i_ —l—*_l ”
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e Improved Training Techniques for GAN (Salimans et al, NIPS2016)

* The paper primarily about GAN tricks

* also IS, and semi-supervised learning, more'to cover later
* Trick Suggestions

* Feature matching

* Minibatch discrimination

* Historical averaging

2
1 . . :
* Include term |0 — ;Z{ﬂ 6| for averaging historical weights

* Inspired by the fictitious.self-play algorithm in game theory
* Exponential-weight averaging for efficient computation
e Similar to.how DQN stabilizes training

* Most stabilizingtricks in RL works here as well

3/18 Copyright @ 111S, Tsinghua University
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e Improved Training Techniques for GAN (Salimans et al, NIPS2016)
* The paper primarily about GAN tricks

* also IS, and semi-supervised learning, more'to cover later
* Trick Suggestions

* Feature matching Default diseriminator cost:

* Minibatch discrimination

- Historical averaging cross_entropy (1., discriminator(data))

. One-sided label smoothing |~ CL0Ss_entropy(0., discriminator(samples))

* Change positive label to 0.9

One-sided label smoothed cost (Salimans et al
2016):

cross_entropy (.9, discriminator(data))
F@PaSsnentrePpy (0., discriminator(samples))x

3/18

Q
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GAN Technigues

e Improved Training Techniques for GAN (Salimans et al, NIPS2016)
* The paper primarily about GAN tricks

* also IS, and semi-supervised learning, more'to cover later

* Trick Suggestions
* Feature matching
* Minibatch discrimination
* Historical averaging
* One-sided label smoothing
* Change positive label to 0.9
* Why only ong=sided?
» Data label(positive) a, sample label (negative)
A Pdata(X)+Ppc(x)

Pdata(*)+pg(x)
* If f >0, then for x with p;,:4(x) = 0, G has no incentive to move p;(x) to 0

3/18 Copyright @ 111S, Tsinghua University 53
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e Improved Training Techniques for GAN (Salimans et al, NIPS2016)
* The paper primarily about GAN tricks

« also IS, and semi-supervised learning, more- '8
* Trick Suggestions |

* Feature matching
Minibatch discrimination
Historical averaging
One-sided label smoothing

Virtual batch normalization
* Issue of batch norm in DCGAN
* Output of G(x) can be highly dependent on each other
» |dea:‘select a fixed batch B to compute batch statistics
* Only applied when training generator G for computation purpose
3/18 * Practical: combine B arfehcurré'tit batekiteoravoid overfitting 54
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e Improved Training Techniques for GAN (Salimans et al, NIPS2016)
* The paper primarily about GAN tricks

* also IS, and semi-supervised learning, more'to cover later

* Trick Suggestions

* Feature matching
Minibatch discrimination
Historical averaging
One-sided label smoothing
Virtual batch normalization

e And more!
* Check https://github.com/soumith/ganhacks and more on Google
* “Keep calm and train @ GAN” @i s s rsinsha tiversis

OpenPsi @ I111S
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 Some mathematical technique

* L(8) = 2/SD(p¢l|Paata) — l0g 4 with-¢p*
e |ssue of JSD:

* Gradient vanishing when p;,4:, and-p; are fully disjoint
* Mode collapse

e We need a better metric!

* |dea: Wasserstein distance

e |tis also called Earth Mover’s distance

W(P,Q) = y~11[r(1}1;,Q) E(x,y)~y[|x - yl]

* |ntuition:
e Two distribution of dirt

* We want to move the dirt to change P to Q

1.0

0.8 1

0.6 1

0.4 1

0.2 1

0.0 A

OpenPsi @ I111S

P

-

0.0 0.2 0.4 0.6 0.8 1.0

1 « W(P,Q): the minimum energy.consumed.to. transport dirt from P to Q o
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* Wasserstein Distance (Earth Mover’s distance)
W(P: Q) = inf E(x,y)~y[|x — yl]

y~11(P,Q) ™ o
. te
* Examples: discrete case ST
. _1 _ £ 5] NS
P = o Categorical(3,2,1,4) _EH ﬂ
1 . T -
¢ (Q = -Categorical(1,2,4,3) * LN B:’ 1L
Z R
g4l
g%
o

O 0 O O

3/18 Copyright @ 111S, Tsinghua University
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* Wasserstein Distance (Earth Mover’s distance)
W(P: Q) = inf E(x,y)~y[|x — yl]

y~I1(P,Q)
. Step [0] Step [1] Step [2] Step [3]
* Examples: discrete case . s z .
1 . s | N N o my '
* P = -Categorical(3,2,1,4) %BH TN ﬂ > SR H T HH
YA 324 o 24 2 1 : 24
1 : 514 ] 1 de || e | .
* Q = -Categorical(1,2,4,3) * UK qul A, I_Iﬂ I_Iﬂ A
Z g0PU P P P s PL P Pr P P P P P
* Let’s change P to Q! ol B o al
« §=2+2+]|-1=5 g5y 31 . 3
1 _é 2 2 21 2
* SOW(P,Q) =-*5 "1 1 1 11
0- 0- 04 0

O 0 Qs O Q Q2 @ Qs O 0 Qs O

e Continuous case

¢ W(P) Q) — y"’ll[r(l;:Q) Z(x,y)~y p(x) y)lx — yl

* p(x,y) theamount of dirty transported from x to y, |x — y| is the cost of the transport

3/18 Copyright @ 111S, Tsinghua University 58
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* Wasserstein Distance (Earth Mover’s distance)
W(P: Q) = inf E(x,y)~y[|x — yl]

y~I1(P,Q)
e Compare with JSD 10
e P:x=0,0<y <1, uniform 05
* :x=0,0<y<1,uniform .
 Assume 8 # 0 o
* KL(P||Q) = KL(Q||P).= o
+ JSD(P,Q) = ;(zx,y log (i) + Yy log (i)) =log2  °
2 2
- W(P,Q) =16] L

* \Wasserstein Distance is a smooth measure!

* Let’'s make Wasserstein’Distance as a GAN objective!

3/18 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

e

0.0

0.2

0.4

0.6 0.8 1.0

59



Lecture 6, Deep Learning, 2025 Spring

Wasserstein GAN

 WGAN (Arjovsky et al, 18.5k citations, ICML2017)
* Goal: W(pgata Pc)

* Intractable
* Kantorovich Rubinstein Duality

* W(Paata ) —%lfsup B gaed F O] = Expg[f ()]

* |f|, < K: f is K-Lipschitz continuous
* If(x) —fI =Klx =yl

* Search over all K-continuous functions!

 WGAN objective (K =-1)
* f(x; ) is called@critic

* L(P) = Expuglf (6 @) — Exop[f (x; @)

* L(0) = Ex-gz0)[f(x;0)]
 Subjectto |f(x; )|, <1

3/18 Copyright @ 111S, Tsinghua University
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 WGAN (Arjovsky et al, ICML2017)
* Goal: W (paatar Pc)

* Intractable
* Kantorovich Rubinstein Duality

. W(Pdata» pG) = %lfsluEK Ex"‘pdata [f(x)] — Ex~pG [f(x)]

* |f|, < K: f is K-Lipschitz continuous
* f&) = fWI=Kl|x =y

e Search over all K-continuous functions!
 WGAN objective (K =-1)

* f(x; ) is called@critic

* L($) = Ex—pyealf (6 @) — Exep [f O; @)

* L(0) = Ex-gz0)[f(x;0)]
 Subjectto |f(g P, <1

3/18 Copyright @ 111S, Tsinghua University
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1.0

* WGAN (Arjovsky et al, ICML2017) - 1 EEEE
+ Objective W

* L(¢) = Ex~pdata [f(x; ¢)] - Ex~pG [f(x; ®)]
* L(0) = Ex-go)lf (x; P)]
 Subjectto |f(x; )|, <1

* Tricks to enforce |f(x; ¢)|, <1

0.4

0.2

0.0 "= ¢=mey

* For each ¢;, ¢; < clip(¢y—c,c) (elgywith c = 0.01) 7 e
* No momentum! RMSProp suggested (¢ = 5e — 5) Ao ——
* Update critic for n,-j+j¢ batches before update G (npjtic = 5)

* Results

3/18 Copyright @ 111S, Tsinghua University 62
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 WGAN (Arjovsky et al, ICML2017)

3.5

3.0

2.5

1.0

0.5

0.0

3/18

Wasserstein Estimate

JSD Estimate

- ! 1 I I

DCGAN ' ' ‘ : ‘ :

— DCGAN

o T

A J

20 H .

J

0.8 g

JsD estimate

A |
|

] 1 | |
0 100000 200000 300000 400000
Genegator iterations

n .0
500000 600000 0 50000 100000 150000 200000 250000 300000 350000 400000

Generator iterations
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 WGAN (Arjovsky et al, ICML2017)

Top: WGAN with the same DCGAN architécture. Bottom: DCGAN Top: WGAN with DCGAN architecture, no batch norm. Bottom: DCGAN, no batch norm.

3/18 Copyright @ I11S, Tsinghua University 64



Lecture 6, Deep Learning, 2025 Spring OpenPsi @ I111S
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e Summary of WGAN (Arjovsky et al, ICML2017)

e Original GAN objective

minmax Ex.p,,., [108 D(x)] + Ez~p[log(1 D ()]

* Wasserstein GAN objective

min max FE

G D:|D| <1 X~Pdata [D(x)] i ¢ E9?~pG [D(J’C\)]

* Pros
* Address instability and gradient vanishing due to JSD, also help mode collapse
* Robust to architecture choice

* Introduce the idea of Lipschitzness for stabilizing GAN training

e Cons Weight clipping is a clearly terrible way to enforce a Lipschitz constraint. If the
clipping parameter is large, then it can take a long time for any weights to reach

* Cited from-the paper their limit, thereby making it harder to train the critic till optimality. If the clipping

is small, this can easily lead to vanishing gradients when the number of layers is

big, or batch normalization is not used (such as in RNNs). We experimented with

3/18 simple PAITantS {stieh as' pidjecting the weights to a sphere) with little difference? and
we stuck with weight clipping due to its simplicity and already good performance.
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* Improved Training of Wasserstein GANs.(Gulrajani‘et al, NIPS2017)

* Wasserstein GAN objective

min WX By, [F ] = Eopg[F )

 Corollary: f* have |Vf| = 1 almost everywhere under pg4¢q and pg

« WGAN-GP (Gradient Penalty)
* X « (1 —¢€)x+ € X with e~Unif (0;1)
* L(P) = Expyy, [f (6 P = Ezope L] + A - Ex[(IVef (& ¢)[* — 1)7]

3/18 Copyright @ 111S, Tsinghua University 66
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* Improved Training of Wasserstein GANs.(Gulrajani‘et al, NIPS2017)

* Wasserstein GAN objective

min Max Eypgq [f (0] = Ezpef ()]

 Corollary: f* have |Vf| = 1 almost everywhere under pg4¢q and pg
« WGAN-GP (Gradient Penalty)

* X « (1 —¢€)x+ € X with e~Unif (0;1)

* L(@) = Expyaeaf O )= Eopu @] + 4+ Ex[(1Vef (%5 d)* — 1)?]

— r —_—
. . r S eioht clinnine (c |
2 —— Weight clipping (¢ = 0.001
8 Gaussians 25 Gaussians “Swiss Roll = cight clipping (¢ = 0.001)
S ——— — (/ __ — g —— Weight clipping (¢ = 0.01)
— | 7f—7,ii_|4 ‘w (/7 :%{.f %D Weight clipping (¢ = 0.1)
| | : “ “‘ “\‘ “ | . ,i “‘ [ i ‘I i - 0= Gradient penalty
=] I l—_;—L‘J | Mg = o
e — e i w s — S
O I s e N\ 2
o1 g A 7 N =
SN (¢< 0 > ) -
reT G N ) =)
3/18 (( )] DN 0 NS & Copyright 0 @41S, Tsinghua University ‘ ‘ ‘ 67
N /'-7—7;;;;;/ &'_\:L,; — / :;‘;:-,,j T 13 10 7 4 1

Discriminator layer
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Wasserstein GAN

* Improved Training of Wasserstein GANs,.(Gulrajani‘et al, NIPS2017)

* Wasserstein GAN objective

mGin f:rl?laé1 Ex~pdata Lf o] = Eﬁ?'vpa £ (2]

Corollary: f* have |Vf| = 1 almost everywhere under pg,;, and pg

WGAN-GP (Gradient Penalty)

* X <« (1—¢€)x+ e X with e~Unif (0,1)

* L(®) = Expaoeaf (6§15 Egp LFE)] + 2 Ex[(IVef (£ 9)I° — 1)?]
Practical issue

* No batch norm for f(x; @) (since we compute V4 f (X) for each X)

* Layer norm or instance normirecommended as a drop-in replacement
Remark:

» Stable training with various architecture (even ResNet) and Adam

* But expensive due to gradient computation over gradient
3/18 * Also might be unstable due to-theheunistie distribution X when learning rate is high
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DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
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Basehne (G: DCGAN, D: DCGAN)

—m"«n

101-layer ResNet'GG and.D

3/18 69
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* Improved 7}
« Wassersth

Corollaryg
WGAN-
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Practical §
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. Layer 3 } |
 Remark:
. Stable 5
« But ex A :
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* BigGAN (DeepMind, ICLR2019)
e Large-Scale Training of GAN!
* ~“100M params

e TPU training (48h)
e Large batch size

* Trick Suggestions

» Synced cross-replica class-conditioned batch-norm (linear projected from class id)
Large batch size (as much as you can) and wider model!
Sample z from truncated Gaussian N (0,1, —c, ¢)
Orthogonal initialization & spectral normalization for weights
Hinge loss [(z)'= max(0,1 — t * z):
* lgnore samples when D make a correct output with high confidence (z is too high)
* Adaptive hinge loss margin t to include sufficient training data

3/18 Copyright @ 111S, Tsinghua University 71
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lan Goodfellow W )
7 @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948

oned batch-norm (linear projected from class id)
~can) and wider model!

nN(0,1,—c,c)
al normalization for weights

Q) A correct output with high confidence
4:40 PM - Jan 14, 2019 - Twitter Web Client clude sufficient training data

3/18 Copyright @ I11S, Tsinghua University 72
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* GigaGAN (CMU & Adobe Reserch, CVPR2023)

e Alarger GAN model (https://mingukkang.github.io/GigaGAN/)
* 0.13s for 512px & 3.7s for 4k
* ~“650M params g
* 64~ 128x A100 GPU for training )

* Text to image generation
* (more on lecture 10 & 12)

= p—

LDM4-G

=i
2]
8
[}
_
>
=
<
[}
<2
>
&
3/18 5 blue Porsche 356 parked in Eiffel Tower, landscape Obvriaht Grbhh3. ATSinofnalyarsitys (above: Lorikeet and below: Arctic fox) from ADM-G-U [15], LDM-4-G [79], GigaGAM3(ours), and

front of a yellow brick wall. photography StyleGAN-XL [=6]. FID values of each generative model are 4.01, 3.60, 3.45, and 2.32, respectively.
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* GigaGAN (CMU & Adobe Reserch, CVPR2023)

e Alarger GAN model (https://mingukkang.github.io/GigaGAN/)

* 0.13s for 512px & 3.7s for 4k
e ~650M params Model FID-10k | CLIP Score T # Param.
« 64~ 128x A100 GPU for training StyleGAN2 20.91 0.222 27.8M
_ ] + Larger (5.7 x) 34.07 0.223 158.9M
[ ]
Text to image generation P Ilined 28.11 0.228 26.2M
e Alot Of tricks... + Attention 23.87 0.235 59.0M
+ Matching-aware D 27.29 0.250 59.0M
e StyleGAN2 Backbone + Matching-aware Gand D 21.66 0.254 59.0M
: : . Adaptive convoluti 19.97 0.261 80.2M
* Attention + adaptive convolution tDesper 018 020 61 OM
* Multi-scale training + CLIP loss 14.88 0.280 161.9M
) + Multi-scale training 14.92 0.300 164.0M
* Smart designs of G & D + Vision-aided GAN 13.67 0.287 164.0M
. + Scale-up (GigaGAN) 9.18 0.307 652.5M
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Real-ESRGAN (1 I&

e GigaGAN (2023)

e Super-resolution

GigaGAN Upsampler (4096px, 16Mpix, 3.66s)

3/18

Figure 2. Our GAN-based upsampler can serve in the upsampling pipeline of many text-to-image models that often generate initial
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Real-ESRGAN (1K)

e GigaGAN (2023)
e Super-resolution

SD Upscaler (1K)

GigaGAN Up (1K)

GigaGAN Up (4K)

3/18

Figure 3. Our GAN-based upsampler, similar to Figure 2, can also be used as an off-the-shelf superresolution model for real images
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* GigaGAN (2023): Latent-Space Interpolation

“A modern mansion .." “A victorian mansion .."

. s A
sunny day"”

.. 1in sunset” _i&s

3/18 7
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no mixing “crochet” “brick”

+ GigaGAN (2023) e | s I I; |

on tabletop”
* Latent-Space Mixing N

“a ball
on tabletop”

“a teddy bear
oh _tabletop”

“a teddy bear
onh tabletop”

3/18 Copyright @&
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* R3GAN (Brown & Cornell, NeurlPS 2024)

OpenPsi @ I111S

The GAN is dead; long live the GAN!

A Modern Baseline GAN

Yiwen Huang

Brown University

Aaron Gokaslan
Cornell University

Volodymyr Kuleshov
Cornell University

James Tompkin
Brown University

e Latest GAN with modern architectures-& (simplified) convergence guarantee
* A pairwise loss (from RpGAN, NeurlPS2020) for mode coverage

£(6,) = Ez~p, |f (Dp(Ge(2)) = Dy(x) )|

e Zero-centered gradient penalty to ensure convergence
2 2
RiW) = L Espy (19204 1] Ro@) = LB, [0, ]

 Modern architectures (i.e:, ConvNeXT) & very few tricks

103

=
o
N

Generator loss

=
(=)

—— BRpGAN + Ry + R,

< GAN + Ry + R
= RpGAN + R;
< GAN + R,

1 _j !!J
3/18 100 ] - PP

Model NFE| FID|
BigGAN-deep [3] 1 4.06
DDPM [20] 250 11.0
DDIM [76] 50 137
ADM [7] 250 291
EDM [33] 79 2.23
CT [79] 2 11.1
CD [79] 3 432
iCT-deep [77] 2 277
Loss # modes? Dyl DMD [96] 1 2.62
RpGAN +R; + R, 1000 0.0781 Ours—Config B I 209
GAN +R; + R, 693  0.9270 With ImageNet feature leakage [41]:
RpGAN +R; Fail Fail StyleGAN-XL* [69] 1 1.52
€nxdN e+ s, Tsinghua university  Fail Fail 79

Table 8: ImageNet-64.§deterministic sampling.
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GAN Techniques

* R3GAN (Brown & Cornell, Nelf = & '
* Latest GAN with modern archi

* A pairwise loss (from RpGAN, =
L(8, ¢0"'Ez~pzlf;

X~PD
e Zero-centered gradient penalt

2
Ri@) = Loy, VD[]
* Modern architectures (i:e:, Col

103

—— RpGAN + Ry + R,
—<' GAN + Ry + R,

~~ 'RpGAN + R, —
8 107 5 < {GAN + Ry Lo

o
=)

P Rp
8 10° 4§ GAA
Rp &
-
3/18 100 4 v v At B0 Gt e A G’ériqh @
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GAN Extensions

* Semi-Supervised Learning with GAN (Salimans et al, 2016)
* Dataset {(x,y)} U {x}, K labels e s Wih: |
&
2

° d o, ® d 500 1000 2000
Conditioned GAN S TIETRT
Virtual Adversarial [22] 24.63
L] G (Z’ y) - X Auxiliary Deep Generative Model [23] 22.86

Skip Deep Generative Model [23] 16.6140.24

!
¢ D (x) — Softmax(lll L ] lKl lK+1) Ensemblecc,rl;rlglzge;ur models A géé i ig GAe 0 n :1[ ,.

e Label K + 1: “fake” data
e Semi-Supervised Learning
* For x without label, L(x; ) =1 —pp(y = K + 1|x)
* Manually set [, = 1-for simplicity
* Lap(tk; ) =pp (v = k| x&y < K) = softmax(k|ly, ..., ly)
* Ly 0)=1—-pp(y=K+1|x) =1 —softmax(K + 1|14, ...,1g, 1)
* Tip: Labeled data help train a much better D, leading to higher sample quality!
/18 * Remark: minibatch discrimination:breaks.training in practice o1

Fioure 5: (Left) Error rate on SVHN. (Right) Samples from the generator for SVHN.
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GAN Extensions

* Representation learning with GAN?

3/18

* G:z > x;canwe learn E(x) - z?

OpenPsi @ I111S

* ldea: (z,G(2)) and (E(x), x) should from the same distribution!
e Adversarial Feature Learning (BiGAN, Donahue et al, ICLR2017)

* Bidirectional GAN: learn both'G(z) and ‘E'(x)

* Discriminator D(x, z) features
* Input: either (z,G(2)).or (E(x),X), X~Ddata

data

* Predict how likely a sample is from (E(x), x)
* Learns better features than naive AE

© &

O
(=)

Copyright @ 111S, Tsinghua University

82
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GAN Extensions

Figure 4: Qualitative results for ImageNet BiGAN training, including generator samples G/(z), real
18 data x, and corresponding reconstructi@ns (& (1 (se)js wniversity 53
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GAN Extensions

* BigBiGAN (Donahue et al, DeepMind, NIPS2019)
e Large scale training of BiGAN based on-BigGAN
* Similar architecture and design as BigGAN

* Modification
* Additional unary constraint on'E(x) and G(z)
* J(x,z) takes in input of data

discriminator D _ scores

* (x,2), x~Pgata, Z~N(0,) Xl -
* (G(2),E(z)) (negative) _,} :

e A total of 3 loss functions

loss

DarOxtnO
D@ @l

3/18 CopvriahtZa H1E. (Tihahua Bhiverdity 84

L@
17
@

3 19pOdUd
)
generator G

latents
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GAN Extensions

* BigBiGAN (Donahue et al, DeepMind, NIPS2019)

* Large scale training of BiGAN based on-BigGAN
e Similar architecture and design as BigGAN

* Modification
* Additional unary constraint onE(x) and G(z)
* J(x,z) takes in input of

¢ (x' Z), X~DPdata, Z~N(Or I)
* (G(2),E(z)) (negative)

e A total of 3 loss functions
* Reconstruction result

* G(E(x))

3/18 Copyrig , sm_q ua University ' ' '
Figure 2: Selected reconstructions from an unsupervised BigBiGAN model (Section 3.3). Top row
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GAN Extensions

e Extend the generator G
e Standard G:z - x; z~N(0,I)
» Extension: z can be any distribution!
e Style transfer!

Labels to Street Scene Labels to Facade BW to Color

input out
Day to Night

3/18 86

Copyrid!

output output
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GAN Extensions

e Extend the generator G
e Standard G:z - x; z~N(0, 1)
* Extension: z can be any distribution!
» Style transfer!

. . Encoder-decoder U-Net
* Pix2Pix (Isola, Berkeley, CVPR2017) I — o =
* Paired data: A AR £ x: t t
{(x,2)}, z: input; x: targe . .l L,
 Generator G:z — Xx;
* Discriminator D(z, x).v:s. D(z,G(2)) L] n || |

* Tricks
* U-Net architecture for generator with skip-connections for better conditioning
* AdditionalLj loss [x—G (z)|

3/18 Copyright @ 111S, Tsinghua University 87
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GAN Extensions

Input _Ground truth L1 cGAN L1+ cGAN

e Extencid
e Stal
* Ext

. Pair , = : ] i
* Ger
* Dist

| T
* Tric
3/18 88
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GAN Extensions

* Pix2Pix (Isola, Berkeley, CVPR2017)
 Paired data: {(x,2)}, z: input; x: target
 Generator G:z — Xx;

* Discriminator D(z,x) v.s. D(z,G(2))

e Let’s draw cats!
 https://affinelayer.com/pixsrv/

edges2cats
TOOL INPUT OUTPUT

/ a

= |
; P
L&i;j —

DD —
3/18 Copyrig 111S, Tsinghua University 89
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GAN Extensions

INPUT -
* Pix2Pix (
* Paired (/\ e oy >
* Gener 0
* Discrir |
>
* Let’s dra - \ l
* https;, lvy. Tasi @ivymyt
E >

cofit & U HEHHIEES @ vid ;
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GAN Extensions

* Pix2Pix (Isola, Berkeley, CVPR2017)
 Paired data: {(x,2)}, z: input; x: target
 Generator G:z — Xx;

* Discriminator D(z,x) v.s. D(z,G(2))

e Let’s dance! l

3/18

I | I
.
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GAN Extensions

* Pix2Pix (Isola, Berkeley, CVPR2017)
* Everybody Dance Now (Berkeley, ICCV.2019)

é Traming | )
G (“‘-r), Glx,y) Yo, Y1
Ve Yt !
LAl , |
| ] D \ D
: Fake, Real,
1 X Xy Temporally X Xpg Temporally
| Incoherent 1 Coherent
|
| it
| [ .
o | |
|
_J
\
.xl seee s .xr

L \‘\r*

‘A.i\\,g

Norm

— Copyright @ 111S, Tsinghta]University
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GAN Extensions

U A N

3/18 93




Lecture 6, Deep Learning, 2025 Spring OpenPsi @ I111S

. Unpaired
GAN Extensions _
| (e Dx Dy
' [ G|
* What if we do not have paired data? = X i 1%
* Pix2Pix require 1-on-1 mapped data pairs F
* E.g., Py and Py but no pairing (a)
* CycleGAN (Junyan Zhu et al, ICCV2017) . .
« Idea: two generator and two discriminator ——~— - L
. Y | ® Y N X
* G:x—>yand Fiy—>x F F
* Data: Dx(x) = [0,1] andDy(y) ={0,1] X v | [x I
* Cycle-consistency loss T e \ (3 """ C
« x> G(x) > F(6x)) » x (% (©

* Leye = Eg||F(60O) =, | + B, ||6(FO)) - ],
* Train two GANSs jointly with additional loss A4 - Ly,

3/18 Copyright @ 111S, Tsinghua University 94
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GAN Extensions

M_OFIBF_C Photos _ ~ _ Zebras 7 Horses _ Summer Z__ Winter

photo —>Monet : horse —» zebra : winter — summer

Photoraph | Van Gogh Cezanne
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GAN Extensions

* Funny Failures of CycleGAN

Input Output

|

winter —.su

g P

photo — Ukiyo-e photo = Van Gogh - iPhone photo D photo

3/18 Copyright @ I11S, Tsinghua University 96
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GAN Extensions

* DragGAN (Pan et al, SIGGRAPH 2023)

* You can modify an image by dragging points
* No fine-tuning required at all

* Key idea:
* Atrained generator G(z) » x
 Search over z' where key points move long the drag
« “Gradient” estimate forz’

Latent code w w’

%8\ Motion / Q Motion
Generator - - isi
J % supervision xé 24} supervision
ol A 4 % ’ k

Point
tracking

Y

User input

3/18 hua Universit 97

Initial image 1% optimization step Update points Final image
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Summary

* Generative Adversarial Networks
* Implicit generative model and likelihood-free learning
* Flexible framework and powerful neural loss-function
* High quality generation and general applications
 Fundamentally hard to train and.lots of tricks to make it work

* Compare with other generative models
 EBM: generic density, best:math, sample via MCMC, slow converge
* VAE: flexible model and sampling, stable training but approximate inference
* Trade-offs: sampling, expressiveness and training
» Applications:{(conditioned) generation/inference, semi/un-supervised learning

3/18 Copyright @ 111S, Tsinghua University 98
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End of Class

* Yes, it is true!

3/18 Copyright @ 111S, Tsinghua University 99





